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Abstract
Social media posts regarding measles vaccination were classified as pro-vaccination, expressing vaccine 
hesitancy, uncertain, or irrelevant. Spearman correlations with Centers for Disease Control and Prevention–
reported measles cases and differenced smoothed cumulative case counts over this period were reported 
(using time series bootstrap confidence intervals). A total of 58,078 Facebook posts and 82,993 tweets were 
identified from 4 January 2009 to 27 August 2016. Pro-vaccination posts were correlated with the US weekly 
reported cases (Facebook: Spearman correlation 0.22 (95% confidence interval: 0.09 to 0.34), Twitter: 
0.21 (95% confidence interval: 0.06 to 0.34)). Vaccine-hesitant posts, however, were uncorrelated with 
measles cases in the United States (Facebook: 0.01 (95% confidence interval: −0.13 to 0.14), Twitter: 0.0011 
(95% confidence interval: −0.12 to 0.12)). These findings may result from more consistent social media 
engagement by individuals expressing vaccine hesitancy, contrasted with media- or event-driven episodic 
interest on the part of individuals favoring current policy.
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Introduction

Measles results from infection due to an RNA virus in the genus Paramyxoviridae. Transmitted by 
the respiratory route, measles is one of the most contagious diseases known.1 Most individuals in 
the developed world recover without complications, and the death rate of 1–3 per 1000 is largely 
due to measles pneumonia.2 The disease causes fever, cough, and rash,3,4 following an incubation 
period of 8–12 days.3,5,6 Subacute sclerosing panencephalitis is a rare but fatal and untreatable 
complication.2,7 Measles infection normally confers lifelong immunity.8

Vaccination with the measles, mumps, and rubella (MMR) vaccine confers long-lasting protec-
tion, which may be life-long.9 The two-dose MMR schedule shows an efficacy of approximately 
94 percent.10 High vaccination rates achieve herd immunity and are the basis for measles elimina-
tion.8 The World Health Organization estimates that measles vaccination has prevented 20.3 mil-
lion deaths worldwide during 2000–2015.11 In the United States, although measles was declared 
locally eliminated,12 it is repeatedly reintroduced. In late 2014 to early 2015, a measles outbreak 
linked to Disneyland theme parks caused approximately 130 cases in California alone; it spread to 
other states in the United States, as well as Canada and Mexico.13,14

Measles transmission in recent years has been linked to vaccine refusal.15 Opposition to preven-
tive inoculation is hardly new,16,17 although in recent years a now-retracted18 study led by A. 
Wakefield may have reinvigorated anti-vaccination controversy.19,20 Significant media attention to 
this research and personal anecdotes from celebrities may have caused a sense of fear and distrust 
in the vaccine among some individuals, potentially contributing to a decrease in vaccination rates 
in some locations.19,21,22 Despite these real concerns about falling vaccination rates, overall US 
national levels of MMR vaccine coverage appear to have remained high in recent years.23,24

Social media sites may now have become a reflection of the beliefs and practices of people in 
their daily lives.25 Use of social media is extensive; Twitter reports more than 300 million active 
users globally in 201626 and significant numbers of online American adults interviewed by the Pew 
Research Center endorsed using Twitter in 2015 (23%) and Facebook (FB; 72%). Furthermore, 
Twitter and FB provide large amounts of publicly accessible data over a number of years, from 
very large user bases.

Social media have had a large and growing role in health communication.27–30 Public health and 
research organizations have also turned to social media as a form of digital public health surveil-
lance to augment traditional methods of risk or disease monitoring31–38 or as a communication 
tool.39–41 A growing number of non-traditional sources for health information, including blogs and 
alternative news sites, are available online.42–46

Examination of social media can provide insight into public discussion of vaccination47 and 
may be predictive of geographical variation in vaccination compliance.48,49 While Internet com-
munication has played a large role in vaccine opposition for a number of years,50 social media 
provide an outlet to share beliefs widely in real time.42,51,52 Individuals opposing vaccination have 
also made substantial use of social media and emerging communication technologies.51,53,54

Previous studies examining social media and public discourse on measles vaccinations have 
focused on posts during an outbreak35,51 and predictors of which articles are shared on social 
media.55 Others have found differences in linguistic usage between pro- and anti-vaccination posts 
in certain settings.56 Other studies have focused on vaccines other than MMR.52,57 An important 
resource for understanding vaccine sentiment worldwide is provided by the recently introduced 
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Vaccine Sentimeter,47 which used the public Twitter API and other sources of information (includ-
ing news sources and blogs), to yield an index of vaccine sentiment (positive, negative, and neu-
tral/unclear). This tool reports data from May 2012 to November 2014.58 Previous studies have 
also used machine learning classifiers to simply explore and describe the Twitter conversation 
during a disease outbreak.59 Other studies have used social media to relate human mobility to dis-
ease transmission,60 to forecast disease incidence during an outbreak,61,62 and to track the spread of 
rumor and perceived risk during an outbreak.63

In this report, we examine FB and Twitter social media discussion of vaccination in relation to 
measles from 2009 to mid-2016, a period including several widely publicized outbreaks. We 
related volume and machine-learned vaccine-related stance64 to Centers for Disease Control and 
Prevention (CDC)-reported weekly measles counts. Vaccine hesitancy refers to “delay in accept-
ance or refusal of vaccination despite availability of vaccination services.”65 We conjectured that 
individuals who do not express vaccine hesitancy (who are in favor of current practice) become 
drawn into the debate during actual outbreaks of measles (which may, for example, be perceived 
as a threat). Accordingly, we hypothesized that the number of posts exhibiting a given stance—pro-
vaccination (essentially in favor of current practice), or vaccine hesitant—expressed in FB posts 
and on Twitter regarding vaccinations would differ depending on whether a measles outbreak was 
occurring in real time or not.

Methods

Overview

We constructed a list of keywords regarding opinion about vaccinations or measles and used a 
commercial social media analytics platform66,67 (Crimson Hexagon) to collect FB posts and tweets, 
from 2009 to mid-2016, that contained these keywords. We trained the BrightView classifier pro-
vided by the platform to group FB posts and tweets into four classes: pro-vaccination, expressing 
vaccine hesitancy, on-topic but unclear, and off-topic. The BrightView classifier is a supervised 
learning algorithm based, in part, on stacked regression analysis of simplified numerical represen-
tation of text.68 These machine-coded classifications were assessed by comparison with human 
classifications of a random sample of FB posts and tweets. Finally, we compared the volume of FB 
posts and tweets to CDC reports of daily measles counts.

Data collection: social media

FB and Twitter data. FB and Twitter data yield spatiotemporal patterns for measles/vaccination 
posts of interest. Using Boolean search, we searched for FB posts and tweets related to vaccina-
tion (the query is found in Appendix 1). To focus posts expressing the original stance of indi-
viduals, retweets and posts with URLs (or those likely to be advertisements) were filtered out 
prior to our primary analyses. To compare those results to the broader conversation, such posts 
were included in subsequent analysis. Along with the post contents, we collected the date and 
time the posts were published as well as metadata regarding the Twitter and FB accounts submit-
ting the posts.

Using the primary corpus (having already removed retweets, for example), we assessed the 
effect of highly repetitive tweets as follows. We computed the edit distance69 for all pairs of unique 
tweets found in our search. From this, for each tweet, we identified all tweets in our corpus within 
an edit distance of 20 for each tweet (chosen to allow posts to differ by, for instance, a short URL 
or user name). For each author, we assessed whether that author had emitted at least one tweet or 
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not to which there corresponded another tweet in the corpus which was within a distance of 20 
(whether by the same or by an additional author).

Data collection: measles cases. Measles data were acquired from the CDC Morbidity and Mortality 
Weekly Report (MMWR) website, tabulated MMWR Reports of infrequently reported notifiable 
diseases, for years 2009–2016. The period covered by our study was 4 January 2009–27 August 
2016. US measles data are presented by the CDC as (1) weekly reported cases and (2) cumulative 
to date. Cases are diagnosed based on laboratory findings or confirmed epidemiologic link to a 
laboratory-confirmed case. Methods of laboratory confirmation include viral isolation, detection of 
measles-virus specific nucleic acid, IgG seroconversion (or a significant rise), or a positive sero-
logic test for measles immunoglobulin M antibody.70 Since initial samples are ideally collected 
within the first few days following rash onset71–77 and possibly within a few weeks,72,73 diagnosis-
related delays longer than this are unlikely. The cumulative column reported by the CDC contains 
additional cases not reported in the weekly totals, since cases newly reported from past weeks are 
added to the cumulative total. Thus, neither of these reporting streams provide a complete count of 
all cases occurring in a given week. For the cumulative series, we removed outliers (reporting 
error) using a 5-week centered median filter78 and then computed the final differenced series (num-
ber of new cases added to the cumulative total each week).

Stance analysis

Using the built-in BrightView classifier,66 the media analytics platform was also trained to separate 
FB posts and tweets as (1) vaccine hesitant, (2) pro-vaccination, or (3) neither; a total of 96 posts were 
used for each (the minimum recommended being 25 per category). The third category was further 
subdivided into (3a) unclear whether pro-vaccination or vaccination hesitancy despite being related 
to vaccination or (3b) unrelated to vaccination. Individuals exhibiting vaccine hesitancy do not form 
a monolithic bloc,65,79 and so we viewed vaccine hesitancy in a broad sense. We classified as vaccine-
hesitant tweets expressing views including universal opposition, opposition to contents of selected 
vaccines or vaccination schedules, or a conviction that vaccine-related injuries occur at higher rates 
than commonly believed. Individuals expressing views in favor of vaccination, of current policy, or 
simply expressing opposition to vaccine hesitancy were classified simply as “pro-vaccination”; no 
evidence supports the view that “pro-vaccination” individuals form a monolithic bloc either.

To validate the training, three raters manually reviewed and categorized FB posts and tweets 
into the same four categories and their categorizations were compared to the machine-learned cat-
egorizations. The human categorization process consisted of each rater independently reading each 
tweet or FB posts and determining for each post the following: does the post either (1) clearly 
express vaccine hesitancy in whole or in part, (2) favor vaccination, or clearly critique vaccine 
hesitancy or “anti-vaxxers,” (3) reference vaccination without clearly expressing or opposing vac-
cine hesitancy, or is it (4) irrelevant to the debate).

Reviewers first trained together on randomly selected tweets from our corpus (excluding any 
used in training the machine). A group discussion with all three raters followed to reconcile disa-
greements in the categorization and to gain familiarity with the discussion on Twitter (i.e. to 
become aware of the language used in these posts, as well as prominent or potentially polarizing 
figures in the vaccination debate). The raters subsequently completed a second iteration of the 
training with a smaller set of tweets followed by a brief discussion. We then provided the raters 
with Google sheets containing 512 randomly chosen tweets (excluding any used in training either 
the raters or the machine; the sample size would provide a confidence interval (CI) of half-width 
approximately 0.02 for estimated proportions near 0.5).
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All rated the same tweets, masked to the results of other raters and that of the machine. In addi-
tion to the tweet content and URLs to the original tweet, the raters were provided the authors twit-
ter handle (user name) and their actual name, geolocation, and gender if they were available 
through Crimson Hexagon. For tweets classified by the machine as expressing vaccine hesitancy 
by the machine, we report the fraction of such posts actually classified as vaccine hesitant by each 
rater; similarly, for tweets classified as pro-vaccination by the machine, we report the fraction of 
posts classified as pro-vaccination by the raters.

After completing tweet classifications, we conducted a similar process for the three human 
raters to classify a set of FB posts, masked to the classifications assigned by other raters and by the 
machine. Their classifications were analyzed for validation of the machine-learned categoriza-
tions. The sample size was halved, since the FB posts were substantially longer than tweets.

Statistical analysis

We report (1) the total weekly volume of identified FB posts and tweets identified as pro-vaccina-
tion, vaccine-hesitant, or neither pro- nor vaccine-hesitant (but on topic), (2) the weekly volume of 
tweets classified by the machine as pro-vaccination, and (3) the weekly volume of tweets classified 
by the machine as vaccine hesitant. For FB posts and separately for tweets, and for each of these 
three outcome variables, we computed the Spearman rank correlation with (a) the CDC weekly 
counts and (b) the first-differenced cumulative count series described above. As a sensitivity analy-
sis, we used our classification of weeks as being in or not in an outbreak (as described in section 
“Methods”) and report the number of FB posts and tweets, advocating and criticizing vaccine hesi-
tancy, during outbreak and non-outbreak periods; we computed the odds ratio for association. CIs 
in all cases were constructed using time series bootstrap,80 with a fixed width of 8. All calculations 
were conducted in R, version 3.2 for MacIntosh (R Foundation for Statistical Computing, Vienna, 
Austria).

Results

Identified posts

A total of 58,078 FB posts and 82,993 tweets were identified. Of FB posts, 22,331 were known to 
be located in the United States. A total of 38,644 tweets were known to be located in the United 
States. Geolocation was unavailable for 33,335 out of 58,078 (57.40%) of FB posts and for 30,086 
of 82,993 (36.25%) of tweets. The earliest post matching our query occurred on 23 June 2009.

Classification

For FB, the algorithm classified 22,306 posts as against vaccination, a total of 17,928 posts as pro-
vaccination, and 2431 posts as uncertain but on topic (“neither” in the table). The machine algo-
rithm classified a total of 43,259 tweets as against vaccination, a total of 16,297 tweets as 
pro-vaccination, and 12,222 tweets as uncertain but on topic (“neither” in the table). The number 
and stance of FB posts and tweets classified as expressing vaccine hesitancy or expressing pro-
vaccination views are shown in Figures 1 and 2, respectively.

The figures also show changes in reported measles cases over the study period. Epidemics 
occurring during most of 2011 were reported at the time as “the worst measles year in 15 years,” 
with 222 cases provisionally reported across 31 states.81 Another epidemic period corresponds to 
epidemics across 16 states, including New York City during the spring and summer of 2013,82 as 
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well as a publicized epidemic which included a large church in Texas.83 A third includes the out-
break in Ohio largely among Amish residents, which was also the largest outbreak post-elimina-
tion.84 The figure also illustrates the outbreak which apparently began in Disneyland, causing 
approximately 130 cases in California and spreading to other states.13 Finally, a recent epidemic 
period includes an outbreak in Arizona.85

Validation

Comparison of the machine algorithm with each human rater is shown in Table 1, and agreement 
of the human raters with each other is shown in Table 2. The first table shows the fraction of times 
the human rater agreed with a machine classification of a post as being vaccine hesitant versus 
pro-vaccination.

Figure 1. Facebook volume matching query, by stance, 2009–2016, according to classification by as 
described in the text. Measles cases are shown by the differenced cumulative series derived from CDC 
reports, as described in the text. Facebook volume and reported measles cases shown in consecutive 
periods of 4 weeks, with a first period consisting of 3 weeks. BMJ article indicates Deer (2011). Additional 
details on the measles outbreaks are given in Appendix 1.
Source: Crimson Hexagon, CDC.
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Social media and measles surveillance

For the total FB post volume identified by our search and the weekly measles reports, we found 
that the Spearman rank correlation was 0.11 (95% CI: −0.02 to 0.22). For the number of pro-vac-
cination FB posts, the correlation with the weekly reports was 0.22 (95% CI: 0.09 to 0.34). For the 
number of FB posts expressing vaccine hesitancy, the correlation with the weekly reports was 0.01 
(95% CI: −0.13 to 0.14).

For the total tweet volume identified by our search and the weekly measles reports, we found 
that the Spearman rank correlation was 0.06 (95% CI: −0.08 to 0.18, time series bootstrap). For the 
number of pro-vaccination tweets, the correlation with the weekly reports was 0.21 (95% CI: 0.06 
to 0.34). For the number of tweets expressing vaccine hesitancy, the correlation with the weekly 
reports was 0.0011 (95% CI: −0.12 to 0.12). Correlations with the differenced cumulative series 
and for FB are shown in Table 3.

Figure 2. Tweet volume matching query, by stance, 2009–2016, according to classification by BrightView, 
as described in the text. Measles cases are shown by the differenced cumulative series derived from CDC 
reports, as described in the text. Tweet volume and reported measles cases shown in consecutive periods 
of 4 weeks, with a first period consisting of 3 weeks. Additional details on the measles outbreaks are given 
in Appendix 1.
Source: Crimson Hexagon, CDC.
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We also conducted the same analysis restricting the posts to those known to be in the United 
States. Because geolocation information for FB was almost entirely unavailable after March 2015, 
we restricted the analysis of US-based FB posts to the period ending 31 March 2015. As before, we 

Table 1. Agreement of stance classification of social media posts by three human raters and automated 
algorithm.

Platform Machine Total Rater 1 (%) Rater 2 (%) Rater 3 (%)

Facebook Hesitant 92 67.4 60.9 69.6
Pro 92 59.8 58.7 64.1

Twitter Hesitant 250 67.2 64.4 66.4
Pro 106 72.6 72.6 71.7

The columns show the fraction of time each of the individual raters agreed with a machine classification of vaccine hesi-
tant versus pro-vaccination. All four possible categories were included when computing agreement.

Table 2. Agreement of human raters with one another.

Platform Reference 
grader

Reference 
result

Rater 1 
agreement (%)

Rater 2 
agreement (%)

Rater 3 
agreement (%)

Facebook Rater 1 Hesitant – 83.5 85.3
Pro – 89.7 97.9

Rater 2 Hesitant 89 – 85
Pro 91.6 – 94.7

Rater 3 Hesitant 89.6 80.2 –
Pro 88.8 84.1 –

Twitter Rater 1 Hesitant – 83.5 85.3
Pro – 85.2 83.5

Rater 2 Hesitant 94.6 – 89.7
Pro 94.5 – 87.2

Rater 3 Hesitant 86.4 80.3 –
Pro 86.9 81.7 –

For each rater (Column 2) who reached the result vaccine hesitant or pro-vaccination in Column 3, the fraction of times 
the other raters agreed is given in the remaining columns.

Table 3. Correlation of social media stance with reported US measles cases, 2009–2016.

Medium Classification Weekly measles Differenced cumulative 
measles

Facebook Total 0.11 (−0.02 to 0.22) 0.15 (−0.02 to 0.31)
Pro 0.22 (0.09 to 0.34) 0.28 (0.13 to 0.41)
Hesitant 0.01 (−0.13 to 0.14) 0.04 (−0.13 to 0.22)

Twitter Total 0.06 (−0.08 to 0.18) 0.06 (−0.11 to 0.22)
Pro 0.21 (0.06 to 0.34) 0.27 (0.11 to 0.41)
Hesitant 0.0011 (−0.12 to 0.12) −0.02 (−0.18 to 0.14)

Posts on Twitter and Facebook were classified by the BrightView classifier (Crimson Hexagon) as indicated in the text. 
Both CDC weekly reported cases and the increase in the cumulative case count were used (see text for details). Spear-
man rank correlations are reported, with confidence intervals derived from time series bootstrap.
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found significant Spearman correlation between the weekly case counts and the frequency of posts 
classified as pro-vaccination (0.269; 95% CI: 0.17 to 0.41), but not for those posts classified as 
vaccine hesitant (0.0406; 95% CI: −0.14 to 0.24). Similar results were found for the frequency of 
tweets (for which unavailability of geolocation did not mandate restriction to the period ending 31 
March 2015); the Spearman correlation between the weekly case counts and the frequency of 
tweets classified as pro-vaccination was 0.196 (95% CI: 0.06 to 0.34), while for those classified as 
vaccine hesitant, we found 0.00111 (95% CI: −0.12 to 0.12).

In the analyses above, we used a dataset filtered to focus on individuals’ original expressions 
(that excluded retweets, URLs, and presumed advertisements). To compare results of that more 
focused corpus to the broader conversation, we conducted a sensitivity analysis based on a broader 
query in which we did not remove retweets dollar signs or URLs (see Appendix 1 for details). For 
this broader query, similar results were obtained, although corpus volumes were larger. We found 
a Spearman correlation between weekly case counts and non-vaccine-hesitant tweets of 0.173 
(95% CI: 0.05 to 0.28). The Spearman correlation between weekly case counts and non-vaccine-
hesitant tweets was 0.0804 (95% CI: −0.05 to 0.2). Similar findings were obtained for FB and for 
the differenced cumulative series (not shown). In all cases, non-vaccine-hesitant tweets and posts 
showed a greater relationship with measles case counts than was seen for vaccine-hesitant tweets.

As a further sensitivity analysis, we also examined the proportion of pro-vaccination tweets and 
tweets expressing vaccine hesitancy in the weeks we classified as being in an outbreak or not being 
in an outbreak. The classification of weeks as corresponding to an outbreak or not is provided in 
Appendix 1, based on the two CDC measles time series. For FB, the odds ratio for a given post 
being pro versus hesitant during an outbreak was 3.2 compared with a non-outbreak week (95% 
CI: 1.21 to 6.62). We found that for Twitter, the odds ratio for a given tweet being pro versus hesi-
tant during an outbreak was 4.3 compared with a non-outbreak week (95% CI: 1.28 to 12.2). We 
also used the two series to define epidemic or outbreak periods nationally; details are provided in 
Appendix 1. Note that in general, an “epidemic” or “outbreak” simply indicates more than the 
usual number of cases, and no unambiguous definition is possible. Topic wheels for vaccine-hesi-
tant and non-vaccine-hesitant Twitter posts prior to and during the 2014–2015 outbreak are pro-
vided in Appendix 1.

Excluding the year 2009, for which there is a low volume, we found an overall Spearman rank 
correlation of the total on-topic tweets with the weekly reported cases of 0.04 (95% CI: −0.12 to 
0.19). We found an overall Spearman rank correlation of the total pro-vaccination tweets with the 
weekly reported cases of 0.2 (95% CI: 0.04 to 0.34), while the Spearman rank correlation of the 
total vaccine-hesitant tweets with the weekly reported cases was −0.05 (95% CI: −0.2 to 0.09).

Additionally, we computed the Spearman correlation of the measles time series with total tweet 
volume matching our query, tweets classified as pro-vaccination, and tweets classified as vaccine 
hesitant, but with the additional step of excluding all accounts which individually contributed more 
than 0.2 percent (chosen arbitrarily) of the total identified tweets; high-volume accounts may con-
tain contributions from automated scripts. We found an overall Spearman rank correlation of the 
total on-topic tweets with the weekly reported cases of 0.07 (95% CI: −0.06 to 0.21). We found an 
overall Spearman rank correlation of the total pro-vaccination tweets with the weekly reported 
cases of 0.2 (95% CI: 0.05 to 0.34), while the overall Spearman rank correlation of the total vac-
cine-hesitant tweets with the weekly reported cases was 0.01 (95% CI: −0.11 to 0.13).

When we removed tweets from accounts identified as having produced a highly repetitive tweet 
(see section “Methods”), the number of tweets classified as pro-vaccination decreased from 16,297 
to 13,029, while the number of tweets classified as vaccine hesitant decreased from 43,259 to 
13,462 When correlating the weekly number of remaining pro-vaccination and vaccine-hesitant 
tweets with the reported weekly case series, we found that for the remaining pro-vaccination 
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tweets, the Spearman correlation was 0.208 (95% CI: 0.059 to 0.339), while for the remaining 
vaccine-hesitant tweets, the Spearman correlation was 0.0092 (95% CI: −0.11 to 0.131).

Discussion

Social media have, in a few years, gained pervasive importance in many fields86 and have begun to 
change healthcare87 and healthcare research88 as well. Social media can be used to assess public 
discussions of health-related issues and behaviors (such as vaccination) and as a vehicle for dis-
seminating public health information, health promotion messages, or other evidence-based inter-
ventions.41,89–91 In contrast, social media may also be a vehicle for the dissemination of views not 
supported by evidence.51,92

We classified social media posts related to measles as vaccine hesitant or not and compared the 
frequency of such responses with the occurrence of measles in the United States. Across the two 
social media platforms we examined, the proportion of pro-vaccination versus vaccine-hesitant 
posts, at times, depended on the presence of an outbreak. For the corpus we identified, posts clas-
sified as vaccine-hesitant occurred more regularly on the topic of vaccinations and/or measles than 
those classified as pro-vaccination. However, during a reported outbreak, pro-vaccination posts 
overtook the number of vaccine-hesitant posts, a feature which was attenuated in the first year. 
During these online discussions, vaccine-hesitant individuals may call into question the safety and 
efficacy of vaccines, while non-vaccine-hesitant individuals criticize and blame those who choose 
not to vaccinate for the recent outbreaks in vaccine-preventable diseases and for putting immuno-
compromised and vulnerable populations at risk for these diseases.93 Our work differs from prior 
work in that we examined the relationship between volume and stance of the conversation and the 
occurrence of measles itself, as well as the comparison of Twitter and FB. It is possible that online 
discussions are driven, in part, by media coverage of outbreaks, an effect not captured by our clas-
sification of weeks based only on reported case series. Our findings are consistent with a simple 
view: many individuals who promote vaccine hesitancy are frequently or continually engaged in 
online discussions of vaccination, while non-vaccine-hesitant individuals on the whole engage in 
the debate when current events—such as a measles outbreak—bring measles to public awareness.

Our results suggest an ongoing substantial presence of vaccine hesitancy and vaccination oppo-
sition in social media, contrasted with sporadic involvement by individuals favoring vaccination. 
What effect could this social media involvement be yielding? While many factors affect message 
credibility,94–96 of particular concern is the potential importance of bandwagon effects in a social 
media setting.96 Is it possible that the large volume of social media content in opposition to vac-
cines can contribute to such an effect? If so, strategies to increase social media engagement by 
institutions and individuals in favor of vaccination should be developed, urgently. It may be valu-
able for medical and public health practitioners to ask not only how they may use social media 
effectively but how they may empower or encourage social media activism by advocates of evi-
dence-based positions (such as vaccination).

Categorizing social media posts requires inferring a user’s stance from a user’s post. For exam-
ple, tweets were capped at 140 characters, which may have forced users to use non-standard abbre-
viations or phrases that either lack clear context or are poorly phrased. Such texts may be harder to 
interpret, whether by machine or human. Our machine classification appears to have underesti-
mated the number of pro-vaccination posts, when compared to human raters. This potentially 
results in underestimating the correlation of pro-vaccination post frequency with outbreak data. We 
also note that by correlating US measles cases to all available posts, regardless of geocoding, we 
potentially weaken the effect and bias the analysis toward null hypotheses—an effect perhaps par-
tially offset by international coverage of the 2015 measles outbreak.97 Finally, we observe that an 
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article critical of Wakefield’s research98 appears to have caused a large number of pro-vaccination 
posts, even though no outbreak was occurring. This effect would also dilute the correlation of pro-
vaccination posts and outbreak counts. Our use of the BrightView classifier appears to have 
achieved substantial agreement with the humans, but to have fallen short of human-level perfor-
mance in its classifications; training on a larger corpus with a more nuanced classification may 
improve our ability to assess sentiment and stance.99 Finally, our study was descriptive and retro-
spective; no predictions of future social media behavior were ventured.
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Appendix 1

Query

Our Crimson Hexagon search query is as follows:

(autism OR mercury OR thimerosal OR wakefield OR mccarthy OR immigrant OR obama OR #vax)

AND (vaccine OR measles OR “MMR vaccine” OR sb40 OR polio OR chickenpox OR hepatitis OR 
“mmr shot”)

AND -$

AND -http

AND -RT

To more effectively target conversations between individuals, we excluded dollar signs, http, and 
retweets from the primary analysis. This minimizes the number of posts which consist of advertise-
ments, forwarded web links, and retweets. To examine the role of retweets and other forwarded content, 
we conducted a second broader query, identical to the first except no longer excluding dollar signs, http, 
and retweets. Counts (not post content) were extracted with and without these restrictions separately.

Classification

Topic wheels (produced within the Crimson Hexagon platform) illustrate the classification of posts 
into pro-vaccination posts and posts which express vaccine hesitancy (Figure 3).

We also include topic wheels showing topics within posts during the period before and during the 
2014–2015 outbreak, for posts classified as vaccine hesitant and non-vaccine hesitant (Figure 4).

Outbreak periods

To identify starting and ending periods for national outbreak periods in a consistent manner across 
the study period, we used cumulative case reports (which are more complete than the weekly 

http://www.lemonde.fr/ameriques/article/2015/02/10/aux-etats-unis-la-rougeole-devient-une-maladie-de-riches_4573604_3222.html
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counts). Specifically, we removed outliers (reporting error) using a 5-week median smooth. 
Epidemics then appear as peaks in the first-differenced cumulative series. The average weekly 
increase in this cumulative count is approximately 3.6 cases per week; we chose an epidemic 
threshold as 250 percent of this, or a count of nine, as indicating an epidemic or outbreak. Weeks 
where the cumulative count increase by nine or more cases were assumed to be during a candidate 
epidemic or outbreak; for any such week, we included the 4 previous weeks and the 3 following 
weeks—the asymmetry reflecting the fact that the cumulative counts contain some reporting delay. 
This yielded seven candidate epidemics based on the cumulative count series. Two of these con-
tained fewer than four cases during the weekly reported counts and were excluded. This procedure 
was conducted by a team member masked to the time series of Tweets and Facebook. This proce-
dure yielded the five epidemic periods (see Table 4) discussed in the text.

Figure 3. (a) Topic wheel for posts expressing vaccine hesitancy on Facebook, 23 June 2009 to 27 August 
2016, derived from Crimson Hexagon. (b) Topic wheel for non-vaccine-hesitant Facebook posts in our corpus, 
23 June 2009 to 27 August 2016, derived from Crimson Hexagon. (c) Topic wheel for tweets expressing 
vaccine hesitancy, 23 June 2009 to 27 August 2016, derived from Crimson Hexagon. (d) Topic wheel for 
non-vaccine-hesitant tweets in our corpus, 23 June 2009–27 August 2016, derived from Crimson Hexagon. 
(*redacted specific famous celebrity’s name). 
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Figure 4. (a) Topic wheel for tweets expressing vaccine hesitancy during the non-outbreak period 14 
September 2014 to 15 November 2014, derived from Crimson Hexagon. (b) Topic wheel for tweets in 
our corpus not expressing vaccine hesitancy during the non-outbreak period 14 September 2014 to 14 
November 2014, derived from Crimson Hexagon. (c) Topic wheel for tweets expressing vaccine hesitancy 
during the outbreak period 30 November 2014 to 30 May 2015, derived from Crimson Hexagon. (d) 
Topic wheel for tweets in our corpus not expressing vaccine hesitancy during the outbreak period 30 
November 2014–30 May 2015, derived from Crimson Hexagon. (*redacted specific famous celebrity’s name). 

Table 4. Start and end dates for outbreak periods as defined in the appendix.

Outbreak period Start End Total weekly cases

1 20 February 2011 15 October 2011 82
2 31 March 2013 6 July 2013 21
3 26 January 2014 13 September 2014 401
4 30 November 2014 30 May 2015 46
5 17 April 2016 11 June 2016 18

The total number of weekly cases during the period is shown, along with the total change in the cumulative case count 
as reported by the CDC.




